3n^2+6n-16972=0

Simple and best practice solution for 3n^2+6n-16972=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3n^2+6n-16972=0 equation:


Simplifying
3n2 + 6n + -16972 = 0

Reorder the terms:
-16972 + 6n + 3n2 = 0

Solving
-16972 + 6n + 3n2 = 0

Solving for variable 'n'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-5657.333333 + 2n + n2 = 0

Move the constant term to the right:

Add '5657.333333' to each side of the equation.
-5657.333333 + 2n + 5657.333333 + n2 = 0 + 5657.333333

Reorder the terms:
-5657.333333 + 5657.333333 + 2n + n2 = 0 + 5657.333333

Combine like terms: -5657.333333 + 5657.333333 = 0.000000
0.000000 + 2n + n2 = 0 + 5657.333333
2n + n2 = 0 + 5657.333333

Combine like terms: 0 + 5657.333333 = 5657.333333
2n + n2 = 5657.333333

The n term is 2n.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2n + 1 + n2 = 5657.333333 + 1

Reorder the terms:
1 + 2n + n2 = 5657.333333 + 1

Combine like terms: 5657.333333 + 1 = 5658.333333
1 + 2n + n2 = 5658.333333

Factor a perfect square on the left side:
(n + 1)(n + 1) = 5658.333333

Calculate the square root of the right side: 75.221893974

Break this problem into two subproblems by setting 
(n + 1) equal to 75.221893974 and -75.221893974.

Subproblem 1

n + 1 = 75.221893974 Simplifying n + 1 = 75.221893974 Reorder the terms: 1 + n = 75.221893974 Solving 1 + n = 75.221893974 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + n = 75.221893974 + -1 Combine like terms: 1 + -1 = 0 0 + n = 75.221893974 + -1 n = 75.221893974 + -1 Combine like terms: 75.221893974 + -1 = 74.221893974 n = 74.221893974 Simplifying n = 74.221893974

Subproblem 2

n + 1 = -75.221893974 Simplifying n + 1 = -75.221893974 Reorder the terms: 1 + n = -75.221893974 Solving 1 + n = -75.221893974 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + n = -75.221893974 + -1 Combine like terms: 1 + -1 = 0 0 + n = -75.221893974 + -1 n = -75.221893974 + -1 Combine like terms: -75.221893974 + -1 = -76.221893974 n = -76.221893974 Simplifying n = -76.221893974

Solution

The solution to the problem is based on the solutions from the subproblems. n = {74.221893974, -76.221893974}

See similar equations:

| 7k-4k=6 | | 89-3x=8x+25 | | 15x^2+20x | | 3x^2-6x-30 | | y=x^2+9x | | y=x^6+9x | | xy(x+3y)+4xy(3x+y)+2x^2y | | (10p)*21 | | 5x=140-9x | | Y=2x-12m | | -2/3(w-4/9)=-4/5 | | -9h-6+12h+40 | | 2+2=04 | | 5x-(18-6x)=10x-8 | | 5p-4=3p+2 | | 2x+15=35-3x | | x(2)-x-72=0 | | 3x+60=9x+1 | | -3x+15 | | 5x+18=63 | | -4x-43=6x+7 | | 7(-2/7x) | | -(9+k)-5+4k=4 | | 0/2+11=9 | | 100+3x=20+5x | | 2x+12=32-2x | | 2x=96-10x | | 6x+13=69 | | p=t+r+s | | 10x=11x-8 | | 74-99=9x-10-4x | | p=2r+2t |

Equations solver categories